7298 measured reflections

 $R_{\rm int} = 0.017$

2714 independent reflections

2233 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Methoxyphenyl)-1-phenylpyridine-2,6(1H,3H)-dione

Ushati Das,^a Shardul B. Chheda,^b Suhas R. Pednekar,^b Narendra P. Karambelkar^c and T. N. Guru Row^a*

^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012. India, ^bF-12. Organic Chemistry Research Laboratory, Ramanujan Ruja College, Matunga (East), Mumbai 400 019, India, and ^cJai Research Foundation, C-12, Road No. 16, Wagale Industrial Estate, Thane (West) 400 064, India Correspondence e-mail: ssctng@sscu.iisc.ernet.in

Received 13 April 2009; accepted 12 May 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.105; data-to-parameter ratio = 13.6.

In the title compound, C₁₈H₁₅NO₃, the pyridine-2,6-dione ring adopts an envelope conformation. The phenyl ring lies approximately perpendicular to the mean plane of the pyridine-2,6-dione ring [dihedral angle = $81.5 (1)^{\circ}$], while the methoxyphenyl ring is tilted to the same plane by a dihedral angle of 34.8 (1)°. Intermolecular $C-H \cdots O$ interactions link the molecules into chains along [100].

Related literature

For background literature concerning pyridine-2,6-diones, see: Kon & Nanji (1933). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

C ₁₈ H ₁₅ NO ₃	$\gamma = 77.493 (1)^{\circ}$
$M_r = 293.31$	V = 718.40 (9) Å ³
Triclinic, P1	Z = 2
a = 7.4652 (5) Å	Mo $K\alpha$ radiation
b = 9.0885 (7) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.1181 (8) Å	$T = 292 { m K}$
$\alpha = 77.384 \ (1)^{\circ}$	$0.52 \times 0.41 \times 0.32 \text{ mm}$
$\beta = 88.747 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.921, T_{\max} = 0.970$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	200 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 0.91	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
2714 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	Н…А	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C4 - H4 \cdots O2^{i}$ C17 - H17 B \cdots O1^{ii}	0.93 0.96	2.52 2.55	3.4260 (18) 3.073 (2)	164.00 114.00

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z + 1.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST program at IISc.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2366).

References

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kon, G. A. R. & Nanji, E. R. (1933). J. Chem. Soc. pp. 2426-2433.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supplementary materials

Acta Cryst. (2009). E65, o1319 [doi:10.1107/S1600536809017942]

4-(4-Methoxyphenyl)-1-phenylpyridine-2,6(1H,3H)-dione

U. Das, S. B. Chheda, S. R. Pednekar, N. P. Karambelkar and T. N. Guru Row

Comment

The title compound belongs to the pyridine-2,6-dione family (Kon & Nanji, 1933). Pyridine-2,6-diones have a π -conjugated system and an extremely reactive methylene group, which has been exploited to carry out various condensations to form fused ring systems. The Mannich reaction is one of the important processes in medicinal chemistry that introduces an aminomethyl group, which acts as a pharmacophore when introduced into an appropriate substrate, and the title compound has been exploited *via* this reaction to form a wide array of compounds.

In the crystal structure, the pyridine-2,6-dione ring [N1/C10/C4/C2/C12/C11] adopts an envelope conformation (Cremer & Pople, 1975) with puckering parameters $q_2 = 0.1394 (15)^\circ$, $q_3 = 0.0581 (15)^\circ$, $\varphi = 247.1 (6)^\circ$, puckering amplitude Q = 0.1510 (16) Å. The phenyl ring is nearly perpendicular to the pyridine-2,6-dione ring (torsion angle C11—N1—C7—C9 = 100.49°) while the methoxy phenyl ring is tilted to the plane of the heterocyclic ring with a torsion angle C4—C2—C1—C6 = 31.14°. Within the aryl rings, the C—C bonds are in the range of 1.343 (3) to 1.381 (3) Å, which is in accordance with those found in similar structures. The C—N single bonds (1.388 (3) to 1.448 (3) Å), C—O single bonds (1.365 (3) to 1.426 (3) Å), and C=O double bonds (1.213 (3) to 1.220 (2) Å) are within the usual range. The structure contains intermolecular C—H···O hydrogen bonds (see Table and Figure 2) which link the molecules into chains along the *a* axis. Alternating C—H··· π and π ··· π interactions are also present (Figure 3).

Experimental

The title compound was prepared by microwave treatment of 3-(4-methoxyphenyl)-2-pentene-1,5-dioic acid with acetic anhydride to form the corresponding dione, which was then reacted further with aniline to give the resultant compound (yield 96%). ¹H NMR (DMSO): δ 6.98 (*m*, 9H), 3.87 (*s*, 3H), 3.97(*s*, 2H), 6.67 (*s*, 1H).

Refinement

H atoms were placed geometrically with C—H = 0.93–0.97 Å and refined as riding with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$.

Figures

Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. Packing diagram viewed down the *c* axis. The dotted lines indicate intermolecular C—H···O interactions. H atoms not involved in these interactions are omitted.

Fig. 3. Packing diagram viewed down the *a* axis. The dotted lines indicate intermolecular C—H··· π and π ··· π interactions. H atoms not involved in these interactions are omitted.

4-(4-Methoxyphenyl)-1-phenylpyridine-2,6(1H,3H)-dione

Crystal data

C ₁₈ H ₁₅ NO ₃	Z = 2
$M_r = 293.31$	$F_{000} = 308$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.356 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 7.4652 (5) Å	Cell parameters from 2604 reflections
b = 9.0885 (7) Å	$\theta = 2.4 - 28.0^{\circ}$
c = 11.1181 (8) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 77.384 \ (1)^{\circ}$	T = 292 K
$\beta = 88.747 \ (2)^{\circ}$	Block, colourless
$\gamma = 77.493 \ (1)^{\circ}$	$0.52\times0.41\times0.32~mm$
$V = 718.40 (9) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer	2714 independent reflections
Radiation source: fine-focus sealed tube	2233 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.017$
T = 292 K	$\theta_{\text{max}} = 25.7^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.921, \ T_{\max} = 0.970$	$k = -11 \rightarrow 11$
7298 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.105$	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.2183P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.91	$(\Delta/\sigma)_{\rm max} < 0.001$
2714 reflections	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
200 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.43237 (14)	0.81573 (14)	-0.09890 (10)	0.0584 (4)
O2	1.00465 (13)	0.63224 (13)	0.07261 (10)	0.0538 (4)
O3	0.28108 (15)	0.25107 (13)	0.62184 (10)	0.0569 (4)
N1	0.72144 (15)	0.72212 (13)	-0.01738 (10)	0.0388 (4)
C1	0.49575 (18)	0.45771 (15)	0.29553 (12)	0.0369 (4)
C2	0.56872 (18)	0.54010 (15)	0.18235 (12)	0.0370 (4)
C3	0.3591 (2)	0.31101 (17)	0.51532 (13)	0.0418 (5)
C4	0.46008 (19)	0.63892 (17)	0.09213 (13)	0.0420 (5)
C5	0.5880 (2)	0.31397 (17)	0.36111 (13)	0.0428 (5)
C6	0.33201 (19)	0.52602 (17)	0.34314 (13)	0.0432 (5)
C7	0.79229 (18)	0.82360 (16)	-0.11708 (13)	0.0387 (4)
C8	0.2655 (2)	0.45429 (18)	0.45097 (14)	0.0465 (5)
C9	0.8359 (2)	0.95658 (17)	-0.09782 (14)	0.0462 (5)
C10	0.53018 (19)	0.73075 (16)	-0.01525 (13)	0.0406 (4)
C11	0.84395 (19)	0.62585 (16)	0.07338 (13)	0.0397 (5)
C12	0.77132 (19)	0.51251 (18)	0.16928 (13)	0.0446 (5)
C13	0.5210(2)	0.24011 (17)	0.46966 (13)	0.0449 (5)
C14	0.8175 (2)	0.78459 (18)	-0.23010 (14)	0.0475 (5)
C15	0.9349 (2)	1.0118 (2)	-0.30544 (16)	0.0576 (6)

supplementary materials

C16	0.8880 (2)	0.8799 (2)	-0.32436 (15)	0.0567 (6)
C17	0.3837 (3)	0.1142 (2)	0.70023 (15)	0.0585 (6)
C18	0.9086 (2)	1.04971 (19)	-0.19256 (16)	0.0541 (6)
H4	0.33372	0.64938	0.09840	0.0504*
Н5	0.69755	0.26599	0.33143	0.0513*
Н6	0.26674	0.62196	0.30098	0.0518*
H8	0.15638	0.50240	0.48115	0.0558*
H9	0.81648	0.98333	-0.02173	0.0554*
H12A	0.82601	0.50985	0.24829	0.0536*
H12B	0.81319	0.41097	0.15146	0.0536*
H13	0.58454	0.14339	0.51153	0.0539*
H14	0.78734	0.69496	-0.24275	0.0570*
H15	0.98420	1.07481	-0.36893	0.0692*
H16	0.90396	0.85501	-0.40126	0.0680*
H17A	0.50078	0.13092	0.72080	0.0878*
H17B	0.31768	0.08907	0.77430	0.0878*
H17C	0.40147	0.03050	0.65833	0.0878*
H18	0.94004	1.13880	-0.17976	0.0650*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0395 (6)	0.0727 (8)	0.0496 (6)	-0.0081 (5)	-0.0031 (5)	0.0114 (6)
02	0.0335 (6)	0.0649 (7)	0.0596 (7)	-0.0153 (5)	-0.0013 (5)	-0.0016 (5)
03	0.0537 (7)	0.0605 (7)	0.0484 (6)	-0.0121 (5)	0.0116 (5)	0.0042 (5)
N1	0.0332 (6)	0.0435 (7)	0.0380 (6)	-0.0104 (5)	0.0028 (5)	-0.0035 (5)
C1	0.0359 (7)	0.0391 (7)	0.0369 (7)	-0.0111 (6)	0.0015 (6)	-0.0081 (6)
C2	0.0363 (7)	0.0381 (7)	0.0382 (7)	-0.0104 (6)	0.0043 (6)	-0.0100 (6)
C3	0.0423 (8)	0.0474 (8)	0.0372 (8)	-0.0171 (7)	0.0044 (6)	-0.0056 (6)
C4	0.0311 (7)	0.0512 (9)	0.0434 (8)	-0.0120 (6)	0.0038 (6)	-0.0071 (7)
C5	0.0380 (8)	0.0453 (8)	0.0425 (8)	-0.0055 (6)	0.0057 (6)	-0.0083 (6)
C6	0.0403 (8)	0.0391 (8)	0.0454 (8)	-0.0057 (6)	0.0038 (6)	-0.0022 (6)
C7	0.0315 (7)	0.0421 (8)	0.0401 (8)	-0.0086 (6)	0.0009 (6)	-0.0035 (6)
C8	0.0379 (8)	0.0510 (9)	0.0481 (9)	-0.0074 (7)	0.0092 (7)	-0.0085 (7)
C9	0.0458 (9)	0.0458 (8)	0.0470 (9)	-0.0102 (7)	-0.0020 (7)	-0.0096 (7)
C10	0.0351 (7)	0.0454 (8)	0.0393 (8)	-0.0074 (6)	0.0007 (6)	-0.0061 (6)
C11	0.0345 (8)	0.0450 (8)	0.0401 (8)	-0.0086 (6)	0.0033 (6)	-0.0104 (6)
C12	0.0362 (8)	0.0514 (9)	0.0414 (8)	-0.0072 (6)	0.0013 (6)	-0.0021 (7)
C13	0.0465 (8)	0.0407 (8)	0.0434 (8)	-0.0067 (7)	-0.0006 (7)	-0.0029 (6)
C14	0.0451 (9)	0.0538 (9)	0.0471 (9)	-0.0167 (7)	0.0060 (7)	-0.0130 (7)
C15	0.0453 (9)	0.0647 (11)	0.0555 (10)	-0.0196 (8)	0.0034 (7)	0.0099 (8)
C16	0.0498 (10)	0.0783 (12)	0.0418 (9)	-0.0183 (9)	0.0090 (7)	-0.0094 (8)
C17	0.0640 (11)	0.0593 (10)	0.0460 (9)	-0.0164 (9)	0.0044 (8)	0.0046 (8)
C18	0.0501 (9)	0.0446 (9)	0.0655 (11)	-0.0177 (7)	-0.0054 (8)	0.0006 (8)
Geometric paran	neters (Å, °)					

O1—C10	1.2109 (18)	C11—C12	1.493 (2)
O2—C11	1.2133 (18)	C14—C16	1.379 (2)

O3—C3	1.3653 (18)	C15—C16	1.378 (2)
O3—C17	1.427 (2)	C15—C18	1.372 (2)
N1—C7	1.4485 (18)	C4—H4	0.930
N1—C10	1.4129 (19)	С5—Н5	0.930
N1—C11	1.3886 (18)	С6—Н6	0.930
C1—C2	1.4751 (19)	С8—Н8	0.930
C1—C5	1.389 (2)	С9—Н9	0.930
C1—C6	1.395 (2)	C12—H12A	0.970
C2—C4	1.341 (2)	C12—H12B	0.970
C2—C12	1.488 (2)	C13—H13	0.930
C_{3}	1.384(2) 1.282(2)	C14—H14	0.930
C_{3}	1.363(2) 1.457(2)	С15—Н15	0.930
$C_{}C_{10}$	1.437(2) 1 387(2)	C17—H17A	0.950
C6—C8	1 372 (2)	C17—H17B	0.960
C7—C9	1.378 (2)	С17—Н17С	0.960
C7—C14	1.377 (2)	C18—H18	0.930
C9—C18	1.380 (2)		
O1…C14	3.1810 (19)	С17…Н13	2.5500
O1····C17 ⁱ	3.073 (2)	C18····H17A ⁱ	3.1000
O1···C5 ⁱⁱ	3.3926 (19)	C18···H6 ^{iv}	2.9800
O2…C9	3.1501 (19)	$H4\cdots O2^{x}$	2.5200
O2…O2 ⁱⁱⁱ	3.1878 (16)	Н4…С6	2.7100
O2…C11 ⁱⁱⁱ	3.1383 (19)	H4…H6	2.2700
O1···H9 ^{iv}	2.8400	H5…C12	2.7000
O1…H17B ⁱ	2.5500	H5…H12A	2.5800
O2…H4 ^v	2.5200	H5…H12B	2.4000
O2…H12B ⁱⁱⁱ	2.8700	H5…C16 ⁱⁱⁱ	3.1000
O2…H18 ^{vi}	2.7200	Н6…С4	2.7000
O3…H12A ^{vii}	2.8300	Н6…Н4	2.2700
C2…C10 ⁱⁱ	3.592 (2)	H6···C18 ^{iv}	2.9800
C3···C6 ^{vii}	3.556 (2)	H6…H18 ^{iv}	2.5100
C4···C4 ⁱⁱ	3.533 (2)	H8…H8 ^{xi}	2.3700
C5…O1 ⁱⁱ	3.3926 (19)	H9···O1 ^{iv}	2.8400
C6···C3 ^{vii}	3.556 (2)	H12A…C5	2.8600
C9…O2	3.1501 (19)	H12A…H5	2.5800
C10····C2 ⁱⁱ	3.592 (2)	H12A…O3 ^{vii}	2.8300
C11···C11 ⁱⁱⁱ	3.533 (2)	H12B…C5	2.9300
C11···O2 ⁱⁱⁱ	3.1383 (19)	H12B…H5	2.4000
C12···C14 ⁱⁱⁱ	3.588 (2)	H12B···O2 ⁱⁱⁱ	2.8700
C14…O1	3.1810 (19)	H12B…C14 ⁱⁱⁱ	2.9700
C14…C12 ⁱⁱⁱ	3.588 (2)	H13…C17	2.5500
C17…O1 ^{viii}	3.073 (2)	H13…H17A	2.3800
C1…H14 ⁱⁱ	2.9000	Н13…Н17С	2.3200

supplementary materials

C4…H6	2.7000	H14····C1 ⁱⁱ	2.9000
C5…H12A	2.8600	H14····C6 ⁱⁱ	2.8100
C5…H12B	2.9300	H14···C8 ⁱⁱ	3.0000
С6…Н4	2.7100	H17A…C13	2.7600
C6…H14 ⁱⁱ	2.8100	H17A…C18 ^{viii}	3.1000
C8···H14 ⁱⁱ	3.0000	H17A…H13	2.3800
С12…Н5	2.7000	H17B…O1 ^{viii}	2.5500
C13···H17C ^{ix}	3.0500	H17C···C13	2.7800
C13···H17C	2.7800	H17C…H13	2.3200
С13…Н17А	2.7600	H17C····C13 ^{ix}	3.0500
C14H12B ⁱⁱⁱ	2 9700	H18O2 ^{vi}	2,7200
	3 1000		2.7200
С16…Н5…	5.1000	Н18…Н6	2.5100
C3—O3—C17	117.96 (13)	C9—C18—C15	120.48 (16)
C7—N1—C10	118.12 (11)	C2—C4—H4	118.00
C7—N1—C11	118.34 (11)	C10—C4—H4	118.00
C10—N1—C11	123.50 (12)	C1—C5—H5	119.00
C2—C1—C5	122.31 (13)	С13—С5—Н5	119.00
C2—C1—C6	120.23 (12)	С1—С6—Н6	119.00
C5—C1—C6	117.42 (13)	С8—С6—Н6	119.00
C1—C2—C4	122.65 (13)	С3—С8—Н8	120.00
C1—C2—C12	118.18 (12)	С6—С8—Н8	120.00
C4—C2—C12	119.17 (13)	С7—С9—Н9	120.00
O3—C3—C8	115.66 (13)	С18—С9—Н9	120.00
O3—C3—C13	125.04 (14)	C2—C12—H12A	108.00
C8—C3—C13	119.30 (14)	C2—C12—H12B	108.00
C2—C4—C10	123.24 (13)	C11—C12—H12A	108.00
C1C5C13	121.73 (14)	C11—C12—H12B	108.00
C1—C6—C8	121 22 (14)	H12A—C12—H12B	107.00
N1—C7—C9	120.00(13)	C3—C13—H13	120.00
N1-C7-C14	119 30 (13)	C5—C13—H13	120.00
C9-C7-C14	120.69 (14)	C7-C14-H14	120.00
C_{3} C_{8} C_{6}	120.67(14)	C_{16} C_{14} H_{14}	120.00
C7 C9 C18	120.07(11) 110.36(14)	C16 C15 H15	120.00
$C_{1} = C_{10} = C_{10}$	119.50 (14)	C18 C15 H15	120.00
01 - C10 - C4	119.00(13) 122.20(12)	C14 C16 H16	120.00
N1 C10 C4	123.20(13)	$C_{14} = C_{10} = H_{10}$	120.00
NI-CI0-C4	117.10(12)	C15-C16-H16	120.00
	120.80 (13)	03	109.00
	121.64 (13)	03	109.00
NI—CII—CI2	117.54 (12)	03—C17—H17C	109.00
C2—C12—C11	117.14 (13)	H17A—C17—H17B	109.00
C3—C13—C5	119.65 (14)	H17A—C17—H17C	110.00
C7—C14—C16	119.27 (15)	H17B—C17—H17C	109.00
C16—C15—C18	119.70 (16)	C9—C18—H18	120.00
C14—C16—C15	120.49 (15)	C15—C18—H18	120.00
C17—O3—C3—C8	-171.64 (14)	C1—C2—C4—C10	174.69 (13)
C17—O3—C3—C13	8.0 (2)	C12—C2—C4—C10	-4.8 (2)

C10—N1—C7—C9	100.50 (16)	C1-C2-C12-C11	-163.73 (12)
C10—N1—C7—C14	-80.33 (17)	C4—C2—C12—C11	15.8 (2)
C11—N1—C7—C9	-77.12 (17)	O3—C3—C8—C6	179.52 (14)
C11—N1—C7—C14	102.05 (16)	C13—C3—C8—C6	-0.1 (2)
C7—N1—C10—O1	3.7 (2)	O3—C3—C13—C5	-178.98 (14)
C7—N1—C10—C4	-174.06 (12)	C8—C3—C13—C5	0.6 (2)
C11-N1-C10-O1	-178.78 (14)	C2-C4-C10-O1	177.20 (15)
C11—N1—C10—C4	3.4 (2)	C2-C4-C10-N1	-5.1 (2)
C7—N1—C11—O2	3.7 (2)	C1—C5—C13—C3	-0.6 (2)
C7—N1—C11—C12	-174.81 (12)	C1—C6—C8—C3	-0.4 (2)
C10—N1—C11—O2	-173.76 (13)	N1—C7—C9—C18	178.01 (13)
C10-N1-C11-C12	7.7 (2)	C14—C7—C9—C18	-1.2 (2)
C5—C1—C2—C4	151.27 (15)	N1-C7-C14-C16	-178.87 (13)
C5—C1—C2—C12	-29.3 (2)	C9—C7—C14—C16	0.3 (2)
C6—C1—C2—C4	-31.1 (2)	C7—C9—C18—C15	0.9 (2)
C6—C1—C2—C12	148.33 (14)	O2—C11—C12—C2	164.44 (14)
C2-C1-C5-C13	177.76 (14)	N1-C11-C12-C2	-17.04 (19)
C6—C1—C5—C13	0.1 (2)	C7—C14—C16—C15	0.8 (2)
C2—C1—C6—C8	-177.30 (14)	C18—C15—C16—C14	-1.0 (2)
C5—C1—C6—C8	0.4 (2)	C16—C15—C18—C9	0.1 (2)

Symmetry codes: (i) x, y+1, z-1; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+2, -z; (v) x+1, y, z; (vi) -x+2, -y+2, -z; (vii) -x+1, -y+1, -z+1; (viii) x, y-1, z+1; (ix) -x+1, -y, -z+1; (x) x-1, y, z; (xi) -x, -y+1, -z+1.

Hydrogen-bond geometry $(Å, \circ)$

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4 \cdots O2 ^x	0.93	2.52	3.4260 (18)	164.00
C17—H17B···O1 ^{viii}	0.96	2.55	3.073 (2)	114.00

Symmetry codes: (x) *x*-1, *y*, *z*; (viii) *x*, *y*-1, *z*+1.

Fig. 1

Fig. 2

